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Abstract

Many people think that the fuse is a simple device. However this review shows that modelling fuse behaviour
can be very complex, involving electrical circuits, electromagnetics, heat transfer, materials science, mechanical
engineering, plasma physics and numerical methods. The review is restricted to those modelling methods
which can be directly put to practical use in fuse design and applications. The key issues are highlighted, and
significant progress is reported, when compared with the situation which existed at the time of the first ICEFA

in 1976. A list of key reference is provided to accompany the review.
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Why Model ?

m Education & research — better
understanding

m As a design aid — reduces time & cost of
testing

= Fuse applications — conditions differ from
those used for type tests

progress made since 1" [CEFA (1976)
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ICEFA 1976

“why have you done this work™?
“what was the motivation™

“fuses are not produced as an academic
exercise, they are produced for a job of
work 1n the world outside”

Eric Jacks, ICEF4 1976 (transcipt of discussion)

Types of Fuse

m Current-limiting fuses (LV/MV) for many
different applications and standards

# Motor, transformers, capacitors, distribution
systems, power electronics, traction ...

m Explusion fuses
m Miniature fuses
m Substrate / microfuses
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Types of Model
(only those with direct practical applicability reviewed here)
m Simple formulae, ¢.g. [I’t] = K_S?

¢ Adiabatic melting of a conductor

m Full 3-D Finite Element or Finite Difference
Models of Heating

m Arcing in sand filler / failure criteria

m Metallurgical diffusion (M-effect)

m Simplified models — range of applicability
m Generic models for system studies

Why So Ditticult?

not just a bit of wire that melts

®m Multidisciplinary — electrical circuits, electromagnetics,
heat transfer, materials science, mechanical engieerning,
plasma physics, numerical methods ..

Steady state and long-duration thermal balance governed
by non-linear convection and radiation losses from
surfaces

Granulated filler — properties changes with thermal
expansion

Explosive disinegration processes for wire and notched
fuse elements

High-current arc development in sand — followed by
possible restriking

Thermal fatigue processes
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Typical ‘Type’ Tests

progress
m Temperature rise / power loss Yo
m Time-current “gates” * DX QA Gh% @k @A @ ¢

m High current breaking tests (I;, I,, DC) %
& Pt, Ipeak, Varc

m Low overcurrent breaking tests

T
A ¢

m Fatigue testing

* - depends on time value

Steady State Thermal Balance
T

ambient

T

cable blode cable

Normally no fixed-temperature boundary conditions

In steady state, all internal generated heat 1s lost from

surfaces
S
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Boundary conditions

h =

Ca(0/D)02  +

e6 [(Ta+)* - Ta*] /6
natural convection +  radiation
D = characteristic distance

& = emissivity

0 = Stefan-Boltzmann constant

Ta = ambient temperature
R = 1/(hS)

0.387 Ray'/6
[1+(0.559/Pr)?/16]8/27

Range of interest

1 | 1 g | 1 | ] i 1 1 1
10! 102 103 104 105 106 107 108 10° 10'0 10" 1021013
109
Ra, /[ 1+ (0.559/Pr)?/161161

Not an ex:

act sclencel

Forawat 25C, h. = Cx(6/D)

'z must be determined by test

Emis

Sometimes /1 (total) 1s taken to be constant (Newton’s Law)

vity ~0.35 (dull metal) — 0.9 (polished ceramic)
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Thermal Solution Methods

= Finite Difference Methods
¢ Inhouse, flexible, easy to customise
= Finite Element Methods

¢ Can use commercial software (e.g. ANSYS) or
inhouse (best)

Finite Difterence Methods

Fuse & cables are divided into a large
number of sub-volumes and represented
by an interconnected thermal RC
network

Convection & radiation losses at all
outer surfaces

Resulting set of finite-difference
equations solved for temperatures

Sparse matrix methods - (there may be
up to 20 000 subvolumes)

Automatic control of time-step in
transient solutions

System 1s numerically “stiff” — wide
variation of time constants -fully implicit
numerical method needed
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Coping with nonlinear surface losses

m For steady-state solutions, iterative solution
method 1s need

m For transient solution, first do an
appropriate steady-state solution. Then fix
the surface coeflicients (or resistors) and do
the transient solution

M-eftect
m Mass of metal attached to clement —

m Divided into ~ 10 subvolumes - gives good
modeling of transient cooling effect

a) Simple model based on classical
diffusion model

b) Simultaneous solution of diffusion,
thermal, and electrical fields using FEM
(Lindmeyer)
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Finite Element Methods

® Temperature assumedto vary
withineach element according
to some function

Solved for in conjunction with
field equationstogives
temperatures

More commonly used for
solving fuse heating than FDM

Key 1ssues the same as with
FDM

¢ Non-linear losses at
surfaces

¢ Needtouse implicitmethod
for numerical stability

Short-circuit model

Element burnback & radial
expansion

10
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Main processes modeled

Transient heating including local heat loss to filler
Arc 1gnition (Hibner's model)

Element burnback (Daalder's model)

Radial expansion of arc segments due to formation of
fulgurite (Gnanalingam)

Merging of arcs between notches

Arcs hitting fuse end blocks

Possible melting of strip in between notch zones
Effect of tube internal diameter on pressure
Interaction of fuse with test circuit

Transient eddy current effects in test circuit

Numerical methods needed with
short-circuit models

m Circuit & arc model equations arranged as set of
ODEs

m 4th-order Runge-Kutta or similar with embedded
automatic control accuracy

m After each time step transient temperature
distribution in elements & filler are computed

m Automatic adjustment of time step

m Full interpolation for model switching within a
time step
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Typical Results, 200A fuse @, 100kA

fuse current fuse voltage

2
=]

fuze voltage,

wn
=

Cyclic Loading

Manson-Coffin Law
(‘non_ferrous Inetals) Depends on mechanical construction

Peak-to-peak temperature

Average temperature
fluctation

12
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Generic Fuse Models

m For use e.g. with applications or sysiems
studies

m Simplified model of overall behaviour
m Performance complies with a given standard
m No attempt to model a specific design

Progress Since 1976

“Many of the models are constructed on simplitied
assumptions ... in service you don’t get that sort of
thing at all.

You get two arcs in series .. The arc in the fault and
the arc in the fuse ... it is the interplay between
these two arcs and the way the energy 1s shared
between them ...~

Eric Jacks, ICEF4 1976 discussion
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3-phase Arc Flash Event
with C-L Fuses

current, kA

-30 T T T T T
0.000 0002 0004 0006 0008 0.0 O0.012
time, s

-

Ungrounded 3-phase arcing

tault. Appearance of arc
voltage of 1* fuse to melt

current, k&

changes di/df m all phases

.. and so on.

-3 T T T T
nooo 0002 0.004 0006 000 OM0

time, §

Practical Implementation

m User Friendly

m Building a Design from Components

m Components Database

Materials (metals, alloys, body materials, sands)
Standard Test Set-ups (IEC, UL, etc)
Simulation of Type Tests & Other Tests

Report Generation & Output

Graphic Output

Control of Settings

14
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Thank You

m List of selected references provided

15
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